Learning and the Networked Conversation

Ruben R. PuenteDura, Ph.D.

Engines of Transformation
Learning and Conversations

• General Garfield thinks there is a whole college in Dr. Hopkins. He once said: “Take a log cabin in the West, put a wooden bench in it, with Mark Hopkins on one end and a student on the other, and you have a college.”

New York Evangelist, 17 July 1879
What is Web 2.0?

Genesis

- Ted Nelson: Project Xanadu (1960)
 - Rule 7: Links are visible and can be followed from all endpoints

 - Program acted as both browser and editor
The Definition

• Tim O'Reilly (2004-2005):

Some Key Elements

- The Web as platform
- Small pieces loosely joined
- Architecture of participation
- Remixable data source and data transformations
- Harnessing collective intelligence

Web 2.0 Conversations
Conversations Surrounding Production/Consumption Media Sharing Sites

Creation in the Conversation Blogs and Wikis

Conversations Based on Shared Creation Shared Documents Sites

Conversations Mapping the Terrain Shared Bookmark Sites

Conversations About Conversations Social Network Sites

Conversation as Continuous Partial Attention Distributed IM
Conversations Surrounding Production/Consumption

Ustream

Conversations Surrounding Production/Consumption

Swivel
Conversations Based on Shared Creation

Google Docs

Conversations Based on Shared Creation

Gliffy
Creation in the Conversation

Blogs

I was privileged to read several lyrics by Coleridge this past Thursday as part of the University of Mary Washington’s venerable “Thursday Poem” series. The idea is simple: gather on Thursday afternoons to hear someone read thirty minutes worth of poetry. No lectures, minimal commentary, mostly just great verse. My colleague and mentor Bill Kemp (of Kemp Symposium fame) started the series several years ago. For my money, it was a great accomplishment. My colleague (and fellow Music- and poetry-loving Eric Lorenzen) has kept the tradition going with panache and with

Rediscovering Forms of Discourse through Blogs

- The Exploratory Essay
- The Epistolary Conversation
- The Public Scholarly Societies
Wave function collapse

In certain interpretations of quantum mechanics, wave function collapse is one of two processes by which quantum systems apparently evolve according to the laws of quantum mechanics. It is also called collapse of the state vector or reduction of the wave packet. The reality of wave function collapse has always been debated, i.e., whether it is a fundamental physical phenomenon in its own right (which may yet emerge from a theory of everything) or just an epiphenomenon of another process, such as quantum decoherence. In recent decades the quantum decoherence view has gained popularity.

Outline

1 Wave function collapse

The state or wave function of physical system, at some time, can be expressed in Dirac or bra-ket notation as:

$$|\psi\rangle = \sum_i (\psi_i)\langle \psi_i |$$

where the \(|\psi_i\rangle \) specify the different quantum "alternatives" available (technically, they form an orthonormal eigenvector basis). The eigenvalues, \(\psi_i \), are observable or measurable parameters of the system, associated with each eigenvector, and each quantum alternative has a specific value or eigenvalue, \(\psi_i \), of the observable.

The amplitude of \(|\psi_i\rangle\) is the probability amplitude coefficient, which are complex numbers. For simplicity we shall assume that our wave function is normalised:

$$\langle \psi | \psi \rangle = \sum_i (\psi_i)^* \psi_i = 1$$

With these definitions it is easy to describe the process of collapse:

When an external agency measures the observable associated with the eigenvector \(|\psi_i\rangle \) then the state of the wave function changes from \(|\psi\rangle\) to just one of the \(|\psi_i\rangle\) with Born probability \(|\psi_i|^2\). This is called collapse because all the other terms in the expansion of the wave function have vanished or collapsed into nothing.

If a more general measurement is made it is clear that the system is in a state \(|\psi\rangle\) then the system makes a "jump" or quantum leap from the original state \(|\psi\rangle\) to the final state \(|\psi_i\rangle\) with probability of \(|\psi_i|^2\). Quantum leaps and wave function collapse are therefore opposite sides of the same coin.
Seeing Wikis Differently: SIMILE

Source: http://simile.mit.edu/timeline/examples/religions/christianity.html

Conversations About Conversations
Social Network Sites

Conversations Mapping the Terrain
Shared Bookmark Sites

Conversation as Continuous Partial Attention
Distributed IM
Conversation as Continuous Partial Attention

Twitter

Conversations Mapping the Terrain
del.icio.us
The Tag Model

The Tagging Network

Single-user Tag Set

Cross-user Tag Network

Single-user Tag Network
Conversations About Conversations

Ning

Conversations About Conversations
Social Network Sites

Conversations Surrounding Production/Consumption
Media Sharing Sites

Creation in the Conversation
Blogs and Wikis

Conversations Mapping the Terrain
Shared Bookmark Sites

Conversations Based on Shared Creation
Shared Documents Sites

Conversation as Continuous Partial Attention
Distributed IM
Some Resources

• The Horizon Report
 • http://www.nmc.org/horizon

• ELI: 7 Things You Should Know About…
 • http://www.educause.edu/content.asp?page_id=7495&bhcp=1

• 50 Web 2.0 Ways To Tell a Story
 • http://cogdogroo.wikispaces.com/50+Ways
 • http://cogdogroo.wikispaces.com/StoryTools

Hippasus

http://hippasus.com/rrpweblog/
rubenrp@hippasus.com

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.