Learning Analytics: A Hands-On Conceptual Introduction

Ruben R. Puentedura, Ph.D.

KNIME

The Basics

Anscombe's Quartet

Finding Groups: k-Means Clustering

Finding Groups: Hierarchical Clustering

Finding Groups: Multidimensional Scaling

Classifying Members: k-Nearest Neighbors

Classifying Members: Decision Tree

Classifying Members: Naive Bayes

$$p(C|F_1, ..., F_n) = \frac{p(C)p(F_1, ..., F_n|C)}{p(F_1, ..., F_n)}$$

Classifying Members: Support-Vector Machines

Modeling: Linear Regression

Classifying and Modeling: Logistic Regression

Gephi

Degree

Paths and Diameter

- Average Path Length: average shortest path between all pairs of nodes
- Network Diameter: longest shortest path between two nodes

Centrality and Eccentricity

- Betweenness Centrality: how often does a node show up on shortest paths between nodes?
- Closeness Centrality: average distance from a given node to all other nodes in the network
- Eccentricity: maximum entry in the shortest path matrix for any given point

Graph Density

Modularity & Connectedness

- Modularity: measure of quality of division of network into modules (communities)
 - High modularity: corresponds to dense connections within modules, sparse connections between modules.
 - Modularity for a given division:

fraction of edges that fall within groups - fraction of edges if dist. at random

 Connected component: all nodes in the component are reachable by all other nodes in the same component

- Strong: direction matters
- Weak: direction does not matter

Clustering Coefficient

- Measures how close its neighbors are to being a clique (i.e., a complete graph)
- Ratio of number of triangles on a node (3 edges & vertices) to number of triples on a node (3 vertices, 2 edges)

Eigenvector Centrality

- Similar to PageRank
- Connections to high-scoring nodes contribute more to the score of the node in question than equal connections to low-scoring nodes
- A node is central to the extent that it is connected to other nodes that are central

Hippasus

http://hippasus.com/rrpweblog/ rubenrp@hippasus.com

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

