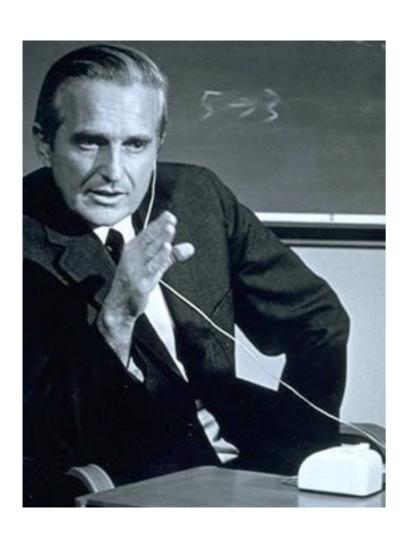
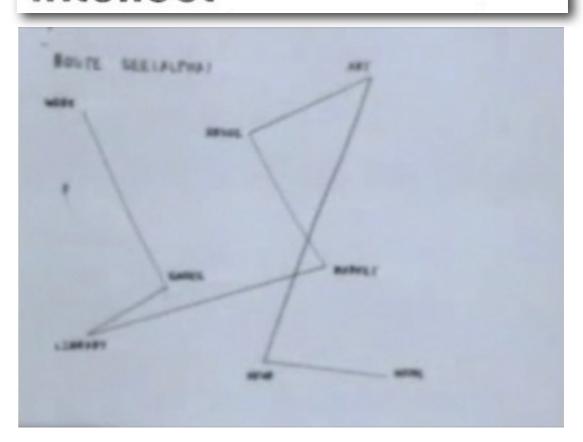

# Advanced One-to-One Computing: Context and Introduction

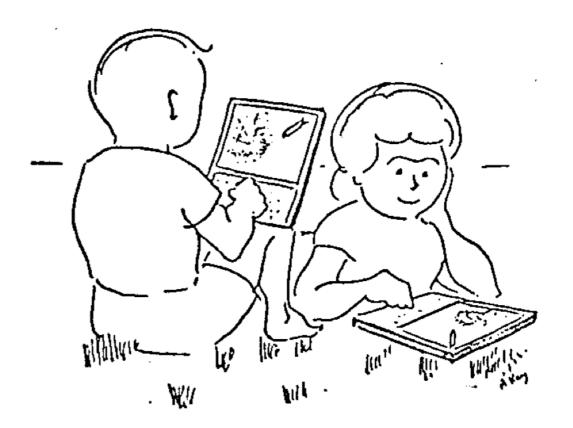

Ruben R. Puentedura, Ph.D.



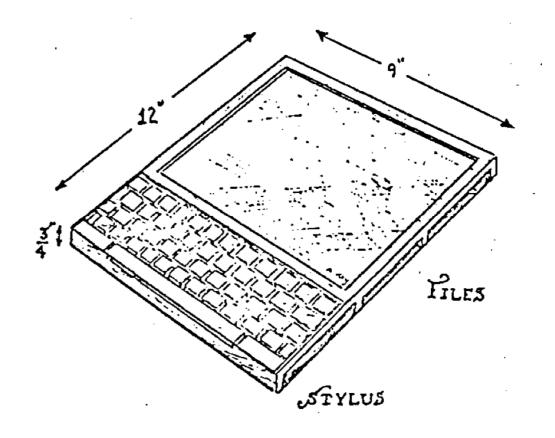


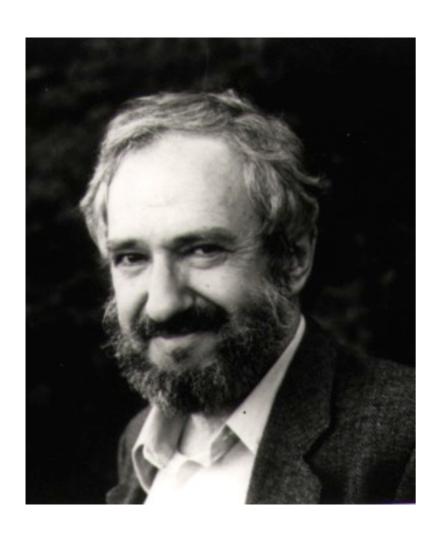

# AS WE MAY THINK









a research center for augmenting human intellect





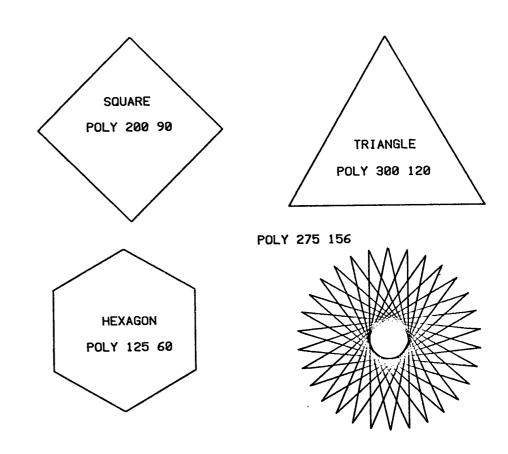



A Personal Computer for Children of All Ages

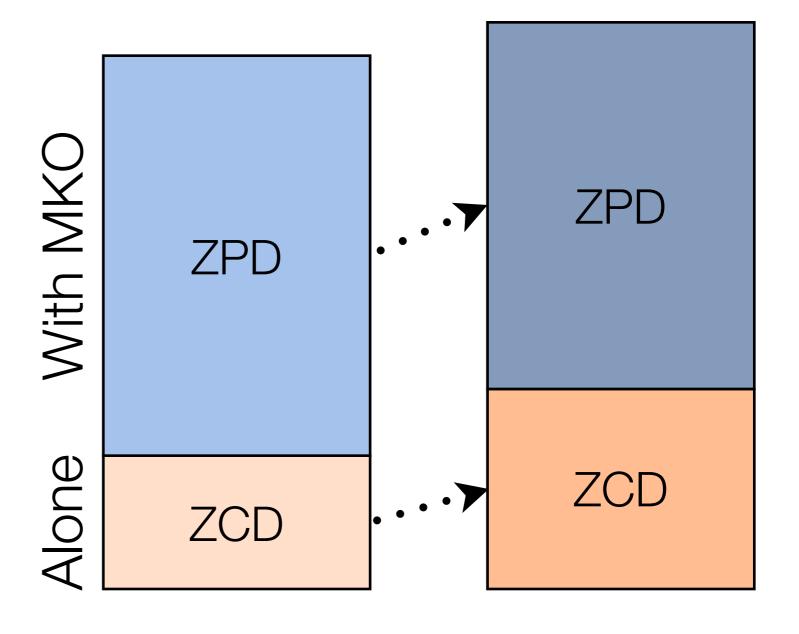


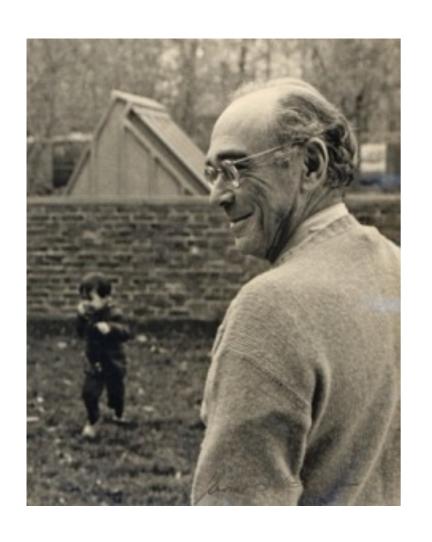


TO POLY :ANGLE :STEP


1. FORWARD :STEP

2. RIGHT : ANGLE


3. POLY : ANGLE : STEP


END

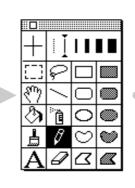
#### ON MAKING A THEOREM FOR A CHILD
















Enactive >> Iconic >> Symbolic











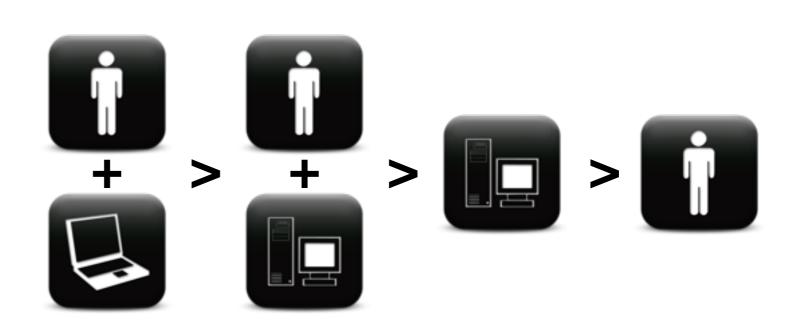





TABLE I

Effect of selected alterable variables on student achievement (see Appendix)

|      |                                 | Effect size       | Percentile equivalent |
|------|---------------------------------|-------------------|-----------------------|
|      |                                 |                   |                       |
| Da   | Tutorial instruction            | 2.00              | 98                    |
| D    | Reinforcement                   | 1.20              |                       |
| Α    | Feedback-corrective (ML)        | 1.00              | 84                    |
| D    | Cues and explanations           | 1.00              |                       |
| (A)D | Student classroom participation | 1.00              |                       |
| Α    | Student time on task            | 1.00 <sup>b</sup> |                       |
| Α    | Improved reading/study skills   | 1.00              |                       |
| С    | Cooperative learning            | .80               | 79                    |
| D    | Homework (graded)               | .80               |                       |
| D    | Classroom morale                | .60               | 73                    |
| Α    | Initial cognitive prerequisites | .60               |                       |
| С    | Home environment intervention   | .50 <sup>b</sup>  | 69                    |
| D    | Peer and cross-age remedial     |                   |                       |
|      | tutoring                        | .40               | 66                    |
| D    | Homework (assigned)             | .30               | 62                    |
| D    | Higher order questions          | .30               |                       |
| (D)B | New science & math curricula    | .30 <sup>b</sup>  |                       |
| `´D  | Teacher expectancy              | .30               |                       |
| C    | Peer group influence            | .20               | 58                    |
| В    | Advance organizers              | .20               |                       |
| _    | Socio-economic status           | - <del></del>     |                       |
|      | (for contrast)                  | .25               | 60                    |

Note. This table was adapted from Walberg (1984) by Bloom.

<sup>&</sup>lt;sup>a</sup>Object of change process—A-Learner; B-Instructional Material; C-Home environment or peer group; D-Teacher.

<sup>&</sup>lt;sup>b</sup>Averaged or estimated from correlational data or from several effect sizes.

| Pre- and Post-Assessment Results |                           |                       |                           |                       |                                    |  |  |
|----------------------------------|---------------------------|-----------------------|---------------------------|-----------------------|------------------------------------|--|--|
| Group                            | Pre-Assessment            |                       | Post-Assessment           |                       |                                    |  |  |
|                                  | Mean of<br>Student Scores | Standard<br>Deviation | Mean of<br>Student Scores | Standard<br>Deviation | Post-<br>Assessment<br>Effect Size |  |  |
| Group A                          | 52.38%                    | 20.52                 | 81.25%                    | 15.94                 | .61                                |  |  |
| Group B                          | 42.36%                    | 19.93                 | 90.97%                    | 12.03                 |                                    |  |  |

| Retention Assessment Results |                      |                       |             |  |  |  |
|------------------------------|----------------------|-----------------------|-------------|--|--|--|
| Group                        | Retention Assessment |                       |             |  |  |  |
|                              | Mean                 | Standard<br>Deviation | Effect Size |  |  |  |
| Group A                      | 63.08%               | 17.02                 | 1.42        |  |  |  |
| Group B                      | 87.27%               | 9.04                  |             |  |  |  |

# Digital Citizenship

# Writing Process

# Research Process Office Tools Math & Science Tools

#### **Internet Tools**







Address Book



























Making Meaning

Maine Explorer NetLogo

Google Earth My World



Preview.



Reader



Cyberduck











SketchUp

Stickies













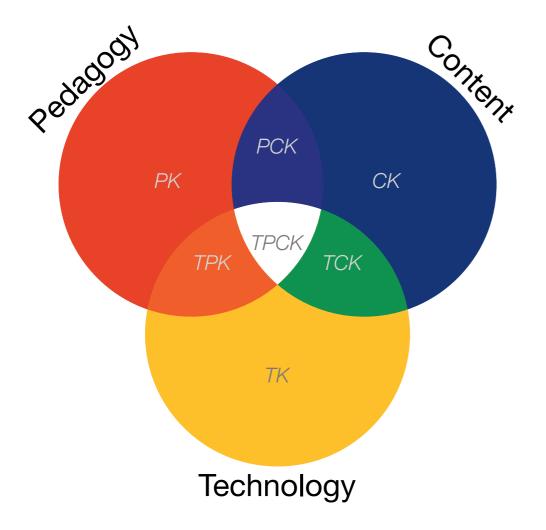
VoiceOver

Info Organization

Web

OmniFocus

Media Tools


ProfCast

**Educational Games** 

Utilities

Digital Storytelling

UDLIAccessibility



#### Redefinition

Tech allows for the creation of new tasks, previously inconceivable

#### **Modification**

Tech allows for significant task redesign

#### **Augmentation**

Tech acts as a direct tool substitute, with functional improvement

#### **Substitution**

Tech acts as a direct tool substitute, with no functional change

# Social Computing

# Digital Storytelling

Transformation

Visualization and Simulation

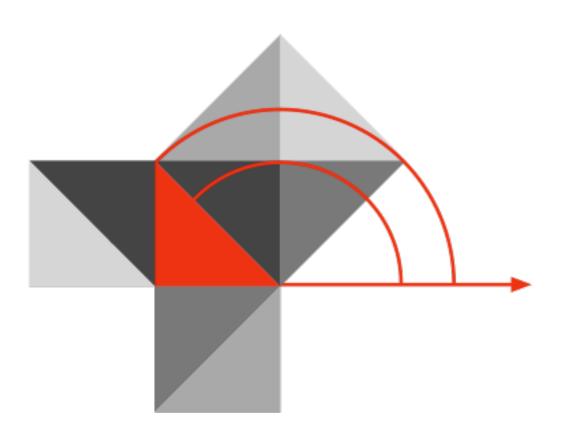
**Educational Gaming** 

# Curricular Development and Assessment

- Curricular Development
  - The Connected Approach to Learning
    - Connections between subject areas
    - Connections within subject areas
  - Asking how we know what we know
    - Ways of knowing in the humanities, arts, sciences, and mathematics
    - Nonsense detection filters
  - Integrating theoretical domains with applied practice
    - Micro theory into macro observation
    - Macro theories into micro observation
- Assessment
  - Assessment for Learning
  - Assessment of Learning
  - Assessment of Technology in Learning

# Three Additional Key Elements

- Triage Approach
- 80/20 Rule
- Shift from "school + homework" to "continuum of learning environments"


### Resources – Part 1

- Vannevar Bush, "As We May Think". *The Atlantic Monthly*. (July 1945) Online at: http://www.theatlantic.com/magazine/archive/1969/12/as-we-may-think/3881/
- Douglas C. Engelbart, A Research Center for Augmenting Human Intellect. (December 1968 live demo) Archived online at: http://sloan.stanford.edu/mousesite/1968Demo.html
- Alan Kay, "A Personal Computer for Children of All Ages". Proceedings of the ACM National Conference. Boston (August 1972) Online at: http://www.mprove.de/diplom/gui/Kay72a.pdf
- Seymour Papert, "On Making a Theorem for a Child". *Proceedings of the ACM National Conference*. Boston (August 1972) Online at: http://portal.acm.org/citation.cfm?id=569942
- Lev Vygotsky, *Mind in Society: The Development of Higher Psychological Processes*. Harvard University Press. (1978)
- Jerome Bruner, *Toward a Theory of Instruction*. Harvard University Press. (1966)
- Garry Kasparov, "The Chess Master and the Computer". *The New York Review of Books*. (February 11, 2010) Online at: http://www.nybooks.com/articles/archives/2010/feb/11/the-chess-master-and-the-computer/

## Resources – Part 2

- Benjamin S. Bloom, "The 2 Sigma Problem: The Search for Methods of Group Instruction as Effective as One-to-One Thinking". *Educational Researcher*, Vol.13, No. 6, pp. 4-16. (June-July 1984) Online at:
  - http://web.mit.edu/5.95/readings/bloom-two-sigma.pdf
- Alexis M. Berry and Sarah E. Wintle, "Using Laptops to Facilitate Middle School Science Learning: The Results of Hard Fun". CEPARE Research Brief. (February 2009) Online at: http://usm.maine.edu/cepare//pdf/Bristol\_Final\_Copy\_cover.pdf
- TPCK Technological Pedagogical Content Knowledge. (2008-2010) Online at: http://www.tpck.org/tpck/index.php?title=Main\_Page
- AACTE (Eds.) The Handbook of Technological Pedagogical Content Knowledge for Educators.
   New York:Routledge, 2008.
- Ruben R. Puentedura, *Transformation, Technology, and Education*. (2006) Online at: http://hippasus.com/resources/tte/
- Ruben R. Puentedura, As We May Teach: Educational Technology, From Theory Into Practice. (2009) Online at:
  - http://tinyurl.com/aswemayteach

# Hippasus



http://hippasus.com/rrpweblog/ rubenrp@hippasus.com

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

