On Learning Objects

The MERLOT conference provided an excellent opportunity to share ideas with other educators, and listen to some thought-provoking presentations on the subject of learning objects. Rather than rehash my favorite presentations (since the materials from all the talks will be available within the next few weeks on the MERLOT website), I would like to share some thoughts about learning objects with an audience that might not have heard of them.
A good starting place would be the definition of a learning object. A learning object can be defined as being made up of a core consisting of a content object (which could be as small as a single image or video fragment, or as large as a set of books), wrapped in a layer that contains information relevant to its educational use (e.g., pedagogical goals, knowledge prerequisites, forms of assessment), with this information structured in standardized fashion. The core need not be digital – it could be a physical book, or a particular geographic location for use in an ecology lesson – but since the wrapper is digital, all sorts of fun things regarding the collection, sharing, and evaluation of these learning objects can now take place. It is important to realize that learning objects are defined by their pedagogical purposes and context – a famous painting by itself could form the core of a learning object, but would not be a learning object by itself. A more detailed discussion of the structure of learning objects can be found in this paper by Larry Johnson.
Simple as the concept might seem in theory, quite a bit of work is needed to make it become a reality in practice. Among the things required are standards for semantic annotation, tools for creating learning objects, databases for storing and searching these objects, ways of sharing the objects, and structures for evaluating the pedagogical quality and effectiveness of those objects. MERLOT is one of several institutions providing a framework for the sharing of research on learning objects, as well as a repository for learning objects and their evaluation. Many other projects have taken on the task of providing end-to-end solutions for the creation, storage, and sharing of learning objects. One of the most interesting in this regard is eduSource Canada for its comprehensiveness, thoughtfulness, adherence to open standards, and (particularly important, in my view) the attention they have paid to scalability – this bodes well for the products of this effort being usable by institutions and individuals without massive financial and hardware resources.
The learning objects movement is still in its infancy – for instance, the wrapper and evaluation tools provided for most objects on the current MERLOT website are primitive at best – but development is proceeding rapidly. There are many potential and unique advantages to be realized by the use of learning objects, but also (unfortunately) some pitfalls. From these, I would like to highlight five key advantages, and three potentially perilous pitfalls.
Aiding in the democratization of learning: wealthy institutions (e.g., MIT) are now sharing their course materials with the world. Learning objects provide a way to make these products available, usable and digestible – the materials for a full MIT course might not be particularly usable in raw form, but could be readily incorporated by other institutions into their teaching practice if broken down into learning object-style components. At the K-12 level, where instructor training and materials creation can become a particularly pressing problem in less wealthy institutions, the use of a learning object-type approach would allow for instructors to use well-evaluated components, while simultaneously reducing the problem of content creation and training to manageable scale.
Assuming a (truly) creative role for the learner: the structure of learning objects is such that learners are not restricted to using objects passively, but can create their own learning objects to share with others as part of the educational process. A simple yet powerful example of the type of tool that can assist in doing this is given by Pachyderm – templates of the type used in Pachyderm would allow learners to express their understanding of the material in ways that are both deeper and more active than standardized testing. In fact, the very process of choosing among, using, discussing, and evaluating learning objects by learners can be viewed as an essential portion of the learning object creation methodology – a recent presentation by Ulrich Rauch and Warren Scott (summarized by Sarah Lohnes here) argued just this point.
Providing a basis for real discussion: the creation and use of learning objects implies a “theory into practice” approach – any given object is intimately tied to a particular point of instructional practice, but requires clear understanding of its related theory (as, for instance, when creating its semantic tags). This could have a very salutary effect on pedagogical discussion: theoretical conversations in the area of pedagogy without actual examples tend to devolve into fluffy wordplay with little or no relevance to actual teaching practice. However, the choice that is frequently made to schematize or omit relevant theory results in narrowly technical solutions that are copied across institutions with little understanding and less success. Learning objects sidestep the divorce between theory and practice, and could provide educators with tangible objects for productive discussion.
Respecting flexibility in learning styles without sacrificing content: in some applications of current pedagogical thought, differences in learning styles have been mistakenly taken as the equivalent of exclusion from areas of knowledge. I have been present – although not silently, I can assure you – at meetings where instructors insisted that “student X, being primarily a visual learner, could not be expected to understand mathematical abstractions”. This is dangerous, condescending, elitist nonsense, and a thorough misrepresentation of the research conducted into learning styles. Learning objects allow for the creation of multiple approaches to the same objectives, which the learner can choose to tailor by selecting different paths based on their individual learning style – a superb example of this was presented at the conference by Laura Franklin as part of a joint talk with Cathy Simpson.
Allowing for greater potential integration of content across levels (K-12, college, adult learners, etc.): because learning objects need not be tied to a given course or lesson plan, they can be recontextualized by different instructors and learners at different levels in varying fashion. For instance, the learning objects on the senses on Tutis Vilis’ website could be readily used (with varying degrees of instructor contextualization) by learners of all levels.
The pitfalls I see as not emanating from anything intrinsic to learning objects, but rather from the fallacies that can arise when enthusiasm for a tool crosses over the line to zealotry. In all fairness, I have not heard these voiced frequently within the learning objects community – but I have heard them voiced often enough to be worth the cautionary note. The three fallacies are:
The fallacy of the LEGO™ bricks: this can best be expressed as “snap a course together from learning object bricks – presto, you’re done”. The LEGO metaphor for learning objects can be useful in conceptualizing their interchangeability and multiplicity – up to a point. When taken too literally, it implies both an excess of structure and passivity in the instructor/learner roles. Additionally, learning objects lack the right features to be literally LEGO-like: the scope of any given object is not uniform, different objects may overlap or leave gaps between them, and the objects themselves need not be immutable objects. The only way to make LEGO brick learning objects is to artificially constrain the production of these objects, and the learning contexts within which they are to be used in ways that are, if anything, less interesting than the least creative aspects of current teaching practice.
The fallacy of the experts: summarizable as “ok, I’ll put in the content, you put in the usability, they put in the accessibility, someone else puts in the semantic markup – presto, a new learning object”. This viewpoint is far more widespread than the previous one – even some people who acknowledge that this type of super-specialized multiple expert development is probably financially infeasible seem to be nostalgic for it. Beyond financial considerations, however, I view this as an example of the malady of overspecialization that affects many sectors of the educational establishment. As someone who has taught courses in usability and accessibility, I can assure you that the material in these areas required to create learning objects does not demand years of study – one or two courses of the same scope and duration as those routinely taken by teachers for recertification will more than suffice. Additionally, a well-designed learning object requires attentions to all aspects of its construction from the start – while it is possible to “bolt on” a tolerable interface to a learning object where usability was not a primary design concern of the content creator’s, it tends to yield mediocre results at best. The experts should be able to focus on those tasks for which deep expertise is required – the creation of tools for the creation of learning objects, research and development in particularly difficult areas of user accessibility, etc.
The fallacy of authoritarianism: which can be simply put as “this is the only worthwhile way to do things – join us or be marginalized”. Whenever I have heard this viewpoint expressed, it has had a particularly dramatic chilling effect upon its listeners. I can think of few things that can kill off a promising pedagogical tool faster than this type of attitude. Learning objects have great pedagogical potential – but only if combined with a broad range of other new and existing tools, and an equally wide scope of critical opinions – none of which are likely to flourish in a “do it my way or else” type of atmosphere.

A Matrix Model for Designing and Assessing Network-Enhanced Courses

I have added to the Resources section of the Hippasus website my paper summarizing a matrix model for course design and evaluation that formed the basis for two recent presentations at the NMC and MERLOT conferences. Extensions of this model are at the heart of Hippasus’ approach to pedagogical design – I’ll have more to say about this in later posts. In the meantime, I welcome all comments people might have on the current paper.

In Defense of Ephemerality

A couple of weeks ago, while reading through some weblogs, I came across the following quote in Don Park’s weblog:

“Blogs will fade away within two years. What we know now as blogs will not be recognized by web users of tommorrow, not as blogs, but as websites. Website technologies and blogging technologies will converge into one.”

When I first read this, I had a fairly clear-cut reaction to the statement – it went something like “here’s hoping you’re completely, totally, and absolutely wrong, Don”. The reason for this reaction has to do with today’s topic – ephemerality and education.
Much of the worrying taking place on the Internet today has to do with issues of ephemerality and its prevention – what do you do about newspaper archives that become pay-only after a while? How do you react when someone objects to their content being archived on Google or the Wayback Machine? How do you prevent permalinks on weblogs from breaking? In all of these discussions, there seems to be an unspoken assumption that permanence=good, ephemerality=bad. Now, it is absolutely true that in many of the discussions I’ve mentioned other important issues are at stake – for instance, some of the groups trying to dearchive their content from Google are doing so as a way of covering up evidence about some rather unsavory activities. That being said, though, the preceding dichotomous equation always seems to be taken as a given. This is very unfortunate, since I believe that ephemerality is not only not always negative, but is in fact essential to many aspects of life that are now mediated by the Internet, not least of all education.
Consider the following scenario: you are at the neighborhood watering hole, and you’ve run into someone who shares your interest in early blues music. You have some fairly unorthodox ideas about the genealogy of the field, but when you mention them to your newfound friend, they react with enthusiasm, and make their collection of recordings available to you for your research. Now, replay the preceding scenario, but this time have your newfound friend pull out a tape recorder as soon as you start to talk, and announce enthusiastically that every word you say will be archived for the ages to come. How likely are you now to share that unorthodox idea that could potentially make you look foolish? How likely is it now that that research partnership could come into existence? Somehow, ephemerality is starting to look much more like a virtue than a vice here…
Anyone who has ever worked in education knows that a similar dynamic operates in the context of a successful classroom. For an instructor to stimulate thoughtful and creative discussions, they have to provide an environment that encourages risk taking on the part of the students. Risk taking does not occur in environments where every single act is permanent, indelible, registered for the ages. Rather, there needs to exist a range of possibilities that can accommodate everything from the truly ephemeral (comments in a brainstorming session) to the permanent (a final project) and everything in between, with the possibility that elements can increase or decrease in ephemerality (for instance, allowing a set of comments from a brainstorming session to be selectively archived so that they can form the basis for a project).
Where do weblogs come into all of this? The richness of opportunity in face-to-face interaction in the classroom deserves no less of a wealth of options in the electronic tools now available. To cite just three examples, chat rooms belong to the realm of the highly ephemeral, traditional architected web pages are perceived as highly nonephemeral, and weblogs are somewhere in between. You’ll notice that I used the term “perceived as” in the previous sentence – this is actually an important point. While, as Don correctly points out, weblogs are just another form of web page, technologically distinct only because of the way they are currently created, they are perceived at this point in time as quite distinct from traditional websites. A traditional website is expected to grow and change, but retain a core of stability in its content; again, at this point in time, weblogs have much weaker expectations in this regard. If Don’s vision comes to pass (which, speaking from a technological viewpoint, is not unlikely), and the concept of a weblog as a distinct entity becomes merged with that of the traditional website, we will be the poorer for it.
It is beginning to sound like I’m in favor of incorporating ephemerality as an explicit design constraint in the networked tools arena. Which I am, in a sense. The issue is not just one of incorporating an “archive after time x, and delete after time y” feature in weblog software, but rather incorporating tokens of intent within the tools that are clearly and visibly communicated to users. As with all other issues regarding tools for social interaction, I do not believe blunt interdictions on forms of use are the way to go; rather, thought needs to be given to the issue by software designers so that social norms and tool features can coevolve. There are generally no laws barring you from bringing a tape recorder to a public gathering place and recording everyone’s conversations – but in most societies it would be viewed as unspeakably rude, and could very quickly make you a social pariah.
My research and experience in using networked tools for education points to the issue of ephemerality as one of the most crucial ones in this area of pedagogical design – and, unfortunately, one of the most neglected ones. If enough people start discussing this topic and using it as an explicit component of how they plan their work, I’m hopeful that this situation can be remedied.
Postscript: on Wednesday, August 6, at 4:30pm I’ll be presenting a talk at the MERLOT International Conference in Vancouver – some of the material I’ll be discussing there relates directly to the topic of ephemerality.

Creating Cognitive Art

I had to give some careful thought to today’s weblog before committing it to the electron stream – I wanted to make sure that it was more than a list of nice tools for creating analytical images, and instead provided a framework for educators to develop new digital storytelling approaches incorporating elements such as graphs, charts, diagrams, and maps.
The toolset should not be viewed as a “one solution fits all” dictum, but rather a means to achieve a broad range of expressive explorations in this domain. An essential portion of this process is a workflow designed for all the parts to fit together – a lovely tool for creating graphs is not much good if, when the graphs are brought into the drawing tool for further annotation, they become a horrid pixelated mess. In the tools selected below, I found that PDF on Mac OS X, WMF/EMF on Windows, and SVG on Linux are the preferred file formats to avoid interchange issues.
Those preliminaries taken care of, there are some essential components that I would suggest should be a part of the toolkit:

  • a tool for creating tables, the simplest form of analytical images, and one that can provide structure for embedding the results of other tools;

  • a general drawing tool, that can both be used for semi-freeform drawing, as well as to edit and touch up the results from other tools;

  • a structured drawing tool, oriented towards the creation of diagrams where the parts bear systematic relationships to each other, and where modifications to one part are correspondingly reflected in the other parts;

  • a data plotting tool that can produce multiple visualizations of the quantitative relationships among different types of data;

  • a map generation and analysis tool that can present the spatialized relationships among different types of data.

Of course, one of these tools can do the job of many – a general drawing tool can in fact substitute for any of the others – but will generally do so clumsily at best. The tools I suggest below are not meant to be the only possible ones – in fact, I will be very happy to hear suggestions others may bring to the table. I chose them for reasonable ease of use, suitability to the task at hand, and free or reasonably low cost (i.e., under fifty dollars academic pricing for any one tool, with free try-before-you-buy periods available for all). Also, this is not intended as an exercise in denying the usefulness of some of the more expensive tools – for instance, one of the best data graphing packages for Windows is well worth the five-hundred-odd dollars it sells for. Instead, the goal is to compile a lean toolkit that still allows for significant exploration of the expressive space outlined in Tufte, Monmonier, and MacEachren.
An Additional General Consideration: for many of these tasks, standard office software suites provide an appropriate point of departure. For those people who lack such a suite, the free OpenOffice is fully comparable to the commercial offerings, and suitable for many of these tasks.
Tables: the standard office software suites are generally adequate to the task of producing expressive and communicative tables – once their presets, generally laden with ugly and unnecessary graphical elements have been overridden, that is. Fortunately, this can be done rather easily in most cases.
General Drawing: while the office suites usually include a minimal set of drawing tools, a dedicated application will tend to provide a more graceful drawing experience. On Mac OS X, iDraw is an inexpensive and elegant tool. For Windows, DrawIt is a surprisingly powerful tool for the price, capable of integrating and exporting to many different file formats. For Linux, the free Sodipodi has a very nice feature set, even though it is strictly limited to SVG for its file import capabilities at this point in time.
Structured Drawing: this is a far less common feature within the office suites – OpenOffice, interestingly enough, is one of the few to include some diagramming features. Fortunately, excellent alternatives are available on all three platforms. For the Mac, OmniGraffle is powerful and easy to use, with very strong integration features with other applications such as outliners and presentation software. On Windows, EDGE Diagrammer has one of the richest feature sets available for software of this type. For Linux, the free Dia provides most of the features of the commercial software packages with a particularly compact and efficient interface.
Data Graphing Tools: as was the case for tables, basic graphing types are reasonably well covered by the office suites. However, the presets are, if possible, even worse than those for tables – many of the defaults could serve as perfect examples of Tufte’s chartjunk. The best results tend to be obtained by turning off unneeded or ill-designed features, and adding any necessary elements in a drawing application. When a range of graphs beyond what most of the suites provide is desired, there exist several options. On Mac OS X, the free trial version of pro Fit is not time limited, and its scope is perfectly well suited to most educational needs. On Windows, Dplot provides a reasonable subset of pro Fit’s capabilities, albeit not for free. For Linux, Grace is currently the most mature interactive graphing program, although its interface can take some getting used to. If an even greater range of options is desired, three free non-interactive programs are available on all three platforms: gnuplot, R, and ploticus. All three of these programs require learning a series of commands for producing graphs, but the range of creative options they provide far exceeds that of the previous programs – ploticus is particularly well suited to developing some of the ideas presented in Tufte’s books.
Map Generation Tools: this is perhaps the trickiest area in terms of both cost and complexity of tools. The best way to start is not with the more complex standalone GIS (Graphical Information Systems) software, but instead by exploring some of the online options. Two free sites stand out in this regard. The first, the David Rumsey Map Collection has over 8800 maps that can be explored online via its specialized GIS software. The richness of this resource cannot be overstated – the maps range from a 1657 map of Osaka, Japan to the 1970 USA National Atlas, and in many cases can be overlaid with contemporary geospatial data. The second, ESRI’s Geography Network allows for the exploration of additional mapping and GIS concepts via the online ArcExplorer application, coupled to a broad range of free data. More adventurous readers may want to try their hand at using a full-blown GIS application, the free cross-platform TNTlite. TNTlite is a very powerful, but quite complex, piece of software; fortunately, the program is accompanied by a generous complement of tutorials that constitute one of the best introductions to GIS I have ever encountered. These tutorials can be digested in small bites, with good rewards at each stage – I would strongly recommend starting at the first one, and progressing through the set.
Thus ends this exploration of a basic toolkit for bringing cognitive art into digital storytelling – if it helps anyone find a new way to tell their stories, please let me know – it would make me feel happy to hear that.

Thinking About Cognitive Art

Much of the richness of digital storytelling is due to the use of a wide range of images as an integral component of the narrative. There is, however, a type of image essential to education that is underrepresented in many of the current digital storytelling projects. This class of images could be called “analytical images” – images that are structured in such a way as to enhance the systematic investigation of a subject. These include – but are not limited to – graphs, charts, diagrams, and maps, a group described by Philip Morrison as “cognitive art”. Unfortunately, these tools are used in much of education in an excessively compartmentalized and narrow fashion that negates their broader expressive potential. Thus, while graphs are used in math class, diagrams in biology class, and maps in geography class, very little is done in terms of teaching students how to conceptualize any of these tools as interrelated members of a wider set of tools for thinking. Some of the materials detailed below might help remedy this situation.
The best sources I have found for clear thinking about analytical images are offline. I would recommend starting with a trilogy of books by Edward R. Tufte: The Visual Display of Quantitative Information, Envisioning Information, and Visual Explanations. Rather than focusing on the technical details of a particular graphical tool for the presentation of information, Tufte develops a rigorous theory of communication via analytical imagery. The first volume in the trilogy is probably the most important – the basic components of Tufte’s theory are laid out here, from the identification of those elements that interfere with visual communication (e.g., the commonly encountered forms of visual clutter that he terms “chartjunk”), to those that promote it (for instance, ways of optimizing the data to ink ratio). The second volume extends Tufte’s thought from the realm of quantitative information into a broader sphere of concepts to be represented, including spatial, chronological and part-to-whole relations. Volume three in turn places these concepts within the context of their use in narrative and evidentiary contexts. It is important to keep in mind that Tufte’s theories can (and should be) thought of separately from the specific examples he proposes – in most instances the examples only represent one particular instantiation of some of his principles, and not a general set of graphical design dictates. In fact, translating Tufte’s thought from the printed page to the computer screen yields results that can look quite different from his examples.
Complementing Tufte’s approach are three books from a specific subset of the cognitive arts – the discipline of mapmaking. While it might seem to run counter to the spirit of this commentary to highlight mapmaking by itself, these books are rich with implications and ideas that stretch well beyond their disciplinary confines. Additionally, they also embody a definition of mapmaking practice that is far more expressive than the “turn left at the gas station, then go for another mile and a half” images that are commonly evoked in educational contexts. Two books by Mark Monmonier – How to Lie With Maps and Mapping It Out: Expository Cartography for the Humanities and Social Sciences act as an outstanding introduction to the subject. The first, despite its ironic title, spends at least as much time exploring how to use maps to communicate as it does warning about their possible misuse. The second book is an efficient guide to cartographic techniques, accessible to even the least experienced mapmakers, and rich in examples of the use of maps to visualize data, make arguments, and tell stories. As an added bonus, both of these books are available in inexpensive paperback editions. A final volume by Alan M. MacEachren, How Maps Work: Representation, Visualization, and Design, parallels Tufte’s work in proposing a theory of maps that goes beyond a particular graphic practice, while developing a theoretical backdrop with applications to all uses of analytical imagery. The scope of MacEachren’s work is outstanding, incorporating topics ranging from cognitive psychology to the theory of signs; while it may take more than one reading to digest all the material presented here, the effort will be richly repaid with original and powerful conceptual tools.
Having a strong set of conceptual tools is good; being able to bring this set into active practice via technological tools is even better. More later on software that does just that…